
https://www.ida.liu.se/~TDDI11	 Embedded	Software	 1	

Chapter	3		Peripherals	

A	typical	embedded	system	continuously	communicates	with	its	environment.	In	the	previous	chapter	we	
assumed	that	data	provided	by	sensors1	and	switches2	are	read	by	a	(dummy)	function	call.	In	this	chapter	
we	will	 first	work	with	timers	that	are	 important	system	peripherals.	Then	we	will	work	with	a	typical	
technique	for	preprocessing	input	signals.	We	will	see	an	example	on	the	target	platform	(bare-machine	
i386	emulated	by	Qemu)	and	then	another	example	on	the	host	platform	(e.g.,	lab’s	Linux	Mint).	

1.1 Timing	

Timers	are	used	to	keep	time,	as	their	name	suggests.	Some	hardware	platforms	provide	several	timers,	
other	 systems	 use	 system	 calls	 (software-defined).	 Correct	 timing	 is	 essential	 for	 a	 vast	 range	 of	 the	
embedded	 systems	 including	 control	 systems.	 For	 example,	 in	 an	open-loop	 scenario	 (as	 discussed	 in	
section	2.1.5)	many	aspects	of	system	operations	are	controlled	by	precise	timing.	A	coffee	machine,	for	
example,	may	be	designed	to	dispense	appropriate	amount	of	coffee	based	on	the	time-interval	that	the	
pump	is	kept	on.	Wrong	timing	results	in	overflow	or	too	little	coffee.	A	hazardous	situation	is	when	traffic	
lights	switch.	There	should	be	appropriate	amount	of	time	between	one	direction	receiving	a	red	signal	
and	the	other	direction	receiving	a	green	signal.	

• Some	timers	can	be	set	to	give	hardware-based	or	software-based	interrupts.	As	always,	polling	is	
another	solution.	Moreover,	in	some	situations	only	one	timer	(or	system	time)	can	be	used	to	keep	
multiple	time	periods.	

• When	working	with	hardware-based	timers	and	counters,	one	must	pay	attention	to	the	meaning	of	
each	bit.	They	might	not	match	the	data-type	that	we	prefer	to	use.	

1.2 Bare-Machine	

Copy	 “peripherals	 target”	 from	 “skeleton”	 directory	 to	 your	 local	 directory	 (we	 assume:	 userID/TDDI11/	
peripherals_target)		

cp -r /home/TDDI11/lab/skel/peripherals_target /home/userID/TDDI11 

Now	let	us	change	to	the	new	directory	and	check	it:	

cd /home/userID/TDDI11/peripherals_target 

ls 

Check	to	see	if	“peripherals	target”	directory	contains	the	following:	

• main.c	
• Makefile	
• floppy.img	
• mtools.conf	
• makeNrun.sh	

																																																													
1	Like	temperature	and	humidity	sensors.	
2	Simple	ones	like	door	lock	and	complex	ones	like	fan	speed	selector.	



https://www.ida.liu.se/~TDDI11	 Embedded	Software	 2	

Similar	 to	 Chapter	 1,	 the	 source	 code	 is	 in	 “main.c”.	 Compiler	 and	 linker	 commands	 are	 listed	 in	
“Makefile”.	The	binary	file	that	will	be	generated	by	this	process	must	be	placed	in	the	floppy	image	file	
“floppy.img”.	Placing	the	binary	file	 into	the	floppy	 image	must	be	done	with	“mcopy”	command.	The	
necessary	settings	for	“mcopy”	are	defined	in	the	configuration	file	“mtools.conf”.	The	floppy	image	is	
used	to	start	the	virtual	machine	“Qemu”.	The	overall	process	is	described	in	the	script	“makeNrun.sh”.	

A	question	will	be	asked	by	“mcopy”	about	what	to	do	with	the	existing	binary	file.	This	is	the	skeleton	
binary	that	you	must	overwrite	with	your	newly	generated	binary	file.	Select	“o”.		

The	source	code	(main.c)	consists	of	four	sections.	The	code	works	with	timing	and	main	system	counter.	
In	this	section,	the	assignment	is	to	read	and	analyze	the	code.	Understanding	the	datatypes	and	used	
functions	is	needed.	

1.2.1 Assignments	

1.	Why	“stopTime”	is	defined	as	“DWORD32”?	

2.	Why	“finalCount”	is	defined	as	“QWORD64”?	

3.	What	does	“Now_Plus()”	do?	

4.	What	does	“CPU_Clock_Cycles()”	do?	

5.	What	does	“x”	(or	similarly	“xM”)	represent?	

6.	What	does	“Milliseconds()”	do?	

7.	Compare	numbers	printed	by	section	2	and	sections	3	of	the	code		

7.1.	Are	they	different?	

7.2.	Should	they	be	similar?	

7.3.	How	do	you	explain	that	these	two	sections	may	report	different	values?	

7.4.	Which	approach	(section	2	or	3)	is	more	appropriate?	Why?	

8.	Section	4	prints	two	different	numbers.	What	causes	their	difference?	

9.	 Consider	 an	 operation	 (e.g.,	 multiplication,	 addition,	 …)	 and	 approximate	 its	 execution	 time.	 A	
technique	is	to	perform	multiple	of	the	selected	operation	in	a	loop	and	divide	the	overall	time	by	the	
number	of	executions	it	had	in	the	loop.	

1.2.2 Demonstrations	

Run	 the	 program	 and	 show	 the	 code	 to	 the	 lab	 assistant.	 Briefly	 discuss	 the	 answers	 to	 the	 above	
questions.	Be	prepared	to	answer	questions	that	evaluate	your	understating	of	the	matter.	

Run	the	code	for	assignment	9	and	show	the	source	code	to	the	lab	assistant.	

	 	



https://www.ida.liu.se/~TDDI11	 Embedded	Software	 3	

	

1.2.3 Deliverables	
• Answers	to	the	above	questions	
• The	code	that	approximates	the	execution	time	(assignment	9).	

Email	them	to	your	lab	assistant.	Write	in	the	subject:	TDDI11	Chapter	3.	

1.3 Preprocessing	

Many	input	devices	might	not	provide	a	very	stable	readout,	especially	 in	an	embedded	system	where	
inexpensive	hardware	 is	used.	Even	a	typical	push	button	will	not	return	always	“0”	and	only	one	“1”	
when	one	presses	it	only	once.	This	is	called	bouncing.	So	if	the	embedded	system	views	every	“1”	readout	
as	an	activation,	it	will	receive	many	activations	when	the	button	is	pressed	only	once.	You	can	read	more	
on	this,	by	searching	online	for	“push	button	bouncing”.	The	solution	is	sometimes	called	“debounce”.	

The	sensors	output	might	be	changing	rapidly	due	to	either	noise	or	their	(unnecessarily)	high	resolution.	
For	example,	an	ambient	light	sensor	might	react	to	a	fly	flying	by.	It	will	be	annoying	for	user	if	the	screen	
brightness	 changes	with	 such	minor	 fluctuations.	 Therefore,	 in	many	 cases	 the	data	 from	 sensors	 are	
directly	sent	to	a	filtering	mechanism	(low-pass/averaging)	before	being	used.	We	did	not	do	so	in	the	
previous	chapter	to	keep	it	simple.	The	results	could	be,	for	example,	that	the	humidity	warning	light	goes	
on	and	off	 like	 it	 is	blinking	randomly	when	the	humidity	 is	around	60%.	This	will	 look	 like	the	system	
cannot	make	 its	mind.	A	simple	 filtering	 technique	 is	moving	average.	 It	 is	basically	an	averaging	over	
consecutive	readout	samples.	We	will	use	it	in	an	example	in	which	the	system	tries	to	make	its	minds	
over	mouse	movements	being	major	or	minor.	

1.4 Host-Machine3	

Copy	 “peripherals	 host”	 from	 “skeleton”	 directory	 to	 your	 local	 directory	 (we	 assume:	 userID/TDDI11/	
peripherals_host)		

cp -r /home/TDDI11/lab/skel/peripherals_host /home/userID/TDDI11 

Now	let	us	change	to	the	new	directory	and	check	it:	

cd /home/userID/TDDI11/peripherals_host 

ls 

Check	to	see	if	“peripherals	host”	directory	contains	the	following:	

• main.c	

The	source	code	(main.c)	consists	of	three	sections.	The	code	works	with	mouse	(pointing	device)	as	a	
motion	sensor	in	section	2	of	the	code.	Section	3	of	the	code	is	timing	related	and	simulates	a	blinking	
light.	 In	 this	 section,	 the	 assignment	 requires	 reading	 and	 analyzing	 the	 code.	 Understanding	 the	
datatypes	and	used	functions	is	needed.	Afterwards,	we	run	the	code,	analyze	the	output,	and	improve	
some	constant	values	in	the	code.	

																																																													
3	This	may	not	execute	correctly	on	other	computers	that	are	not	provided	in	the	lab	rooms.	



https://www.ida.liu.se/~TDDI11	 Embedded	Software	 4	

Compile,	run,	and	exit:	

gcc main.c -lm -lX11 
./a.out 
ctrl + c 

1.4.1 Assignments	

One	objective	here	is	to	design	a	system	that	can	make	its	mind	about	mouse	movements	being	large	or	
not.	 Un-comment	 the	 lines	 that	 print	 “horizontalPosition”,	 “verticalPosition”,	 “horizontalMotion”,	
“verticalMotion”,	and	“combinedMotion”.	Move	the	mouse,	observe	the	results,	and	pay	attention	to	the	
range	 of	 values	 returned	 by	 mouse.	 This	 gives	 us	 an	 idea	 about	 the	 appropriate	 value	 for	
“motionThreshold”.	

The	system	must	not	react	to	small	mouse	movements	or	to	sporadic	and	seldom	large	movements.	The	
following	line	of	code	does	it:	

combinedMotion = sqrt(pow((double)horizontalMotion,2.0) + pow((double)verticalMotion,2.0)); 

motionMetric = alpha * combinedMotion + (1 - alpha) * motionMetric; 

The	 term	 “sqrt(pow((double)horizontalMotion,2.0) + pow((double)verticalMotion,2.0))”	 is	
used	 to	 indifferently	 combine	 horizontal	 and	 vertical	mouse	movement.	 It	 is	 a	 Euclidean	metric.	 Pay	
attention	that	negative	values	will	have	the	same	effect	as	positive	ones.	

The	 suggested	 range	 for	 “alpha”	 is	 between	 0	 and	 1.	 Change	 the	 value	 of	 “alpha”	 and	 observe	 the	
difference	it	makes	in	the	system	response	to	the	mouse	movements.	

Section	3	in	the	code	simulates	a	blinking	light	by	printing	“X”	for	on	and	“.”	for	light	being	off.	The	rate	is	
controlled	by	“blinkHalfCycleSeconds”.	Too	high	blinking	rate	makes	the	light	look	like	being	always	on.	
Too	 low	 blinking	 rate	 makes	 it	 difficult	 to	 realize	 in	 a	 glans	 that	 the	 light	 is	 blinking.	 Change	
“blinkHalfCycleSeconds”	and	find	an	appropriate	rate.	

Answer	to	the	following	questions	with	no	more	than	a	few	sentences:	

1.	Assume	a	circle	around	the	current	mouse	position.	Will	any	straight-line	movement	that	moves	the	
mouse	from	its	current	position	at	the	center	of	the	circle	to	arbitrary	points	on	the	circle	have	the	same	
effect	on	the	“motionMetric”?	Why?	

2.	Name	an	alternative	for	the	Euclidean	metric	that	we	used	(i.e.,	 ℎ" + 𝑣").	Briefly	explain	how	it	works.	

3.	What	are	advantages	and	disadvantages	of	Euclidean	metric?	

4.	Modify	the	code,	compile,	and	run	it	for	alpha	equal	to	0.01,	0.5,	and	0.99.	Move	the	mouse	around	
with	minor	and	major	movements	and	analyze	the	system	behavior.	You	may	find	it	helpful	to	uncomment	
some	of	the	lines	in	“main.c”	to	print	out	more	details.	Name	a	difference	that	each	one	of	these	alpha	
values	causes	in	the	system	behavior.	Choose	an	alpha	value	that	you	think	is	useful.	

5.	(Optional):	Name	an	alternative	for	the	moving	average	filtering	mechanism	that	we	have	used	(i.e.,	
𝑦& = 𝛼×𝑥& + (1 − 𝛼)×𝑦&/0).	Briefly	explain	how	it	works.	

6.	(Optional):	How	does	a	typical	push-button	“debounce”	work?	

Modify	the	code	with	your	chosen	values	for	“alpha”,	“motionThreshold”,	and	“blinkHalfCycleSeconds”.	



https://www.ida.liu.se/~TDDI11	 Embedded	Software	 5	

Optional	 assignment:	 Modify	 the	 code	 with	 alternative	 way	 of	 combining	 horizontal	 and	 vertical	
movements	(instead	of	Euclidean	metric).	This	is	related	to	question	2	above.	

Optional	assignment:	Modify	the	code	with	alternative	filtering	(instead	of	moving	average).	This	is	related	
to	question	5	above.	

1.4.2 Demonstrations	

Explain	 why	 the	 values	 you	 picked	 for	 “alpha”,	 “motionThreshold”,	 and	 “blinkHalfCycleSeconds”	 are	
reasonable.	Do	this	by	running	the	modified	program.	Small	mouse	movements	or	sporadic	and	seldom	
large	movements	must	not	trigger	motion	detection.	Be	prepared	to	answer	questions	that	evaluates	your	
understating	of	the	matter.	

Briefly	discuss	the	answers	to	the	above	questions.	

Optional	assignment(s),	if	you	decided	to	do	it	(them).	

1.4.3 Deliverables	
• Answers	to	the	above	questions	
• The	 code	 modified	 with	 values	 you	 picked	 for	 “alpha”,	 “motionThreshold”,	 and	

“blinkHalfCycleSeconds”.	
• (Optional):	 The	 code	 with	 alternative	 way	 of	 combining	 horizontal	 and	 vertical	 movements	

(instead	of	Euclidean	metric).	
• (Optional):	The	code	with	alternative	filtering	(instead	of	moving	average).	
• Feedback	questionnaire	

Email	them	to	your	lab	assistant.	Write	in	the	subject:	TDDI11	Chapter	3.	

1.5 Resources4	

An	educational	outcome	of	these	labs	is	that	the	students	find	resources,	online.	Therefore,	please	try	to	
search	for	the	relevant	information	on	the	internet.	

For	convenience,	you	may	also	use	the	following:	

• Course	on	operating	systems,	TDIU25,	2nd	lecture	
• https://www.ida.liu.se/~TDDI11/labs/pdf/libepc_doc.pdf	

	

	

																																																													
4	Concepts	visited	in	this	chapter	are	simple	and	widely	available	on	the	web	


